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A Room with a View
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Why Do Birds Flock?

● Foraging: allows many birds to search for and take advantage of same food supply.

● Protection: a larger group of birds has a better chance of spotting a predator, and also

confusing or overwhelming it (see slide 8)

● Mating: males showing off their breeding plumage make themselves more visible to

a greater number of females.

● Warmth: in winter, bird flocks can share benefit of communal warmth to survive

severely cold temperatures.

● Aerodynamics: V-formation!



Drone Swarm



Extreme Flocking: Murmuration



Reynolds Flocking Model

Reynolds Interaction Rules:

● Alignment: steer toward average heading of nearby flockmates.

● Cohesion: steer towards average position of nearby flockmates.

● Separation: steer to avoid crowding nearby flockmates.
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Alignment Cohesion Separation



Olfati-Saber Model
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● Interaction between agents modeled as artificial potential 

fields.

● Potential for a pair of agents has its minimum at the desired 

inter-agent distance d of resulting α-lattice.

● An agent's acceleration based on

○ sum of the forces from all neighbors 

○ velocity alignment term



Other α-Lattice based Models
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● Centralized & Distributed MPC-based approaches; inspired by            

[Zhan & Li 2011, 2013]

● Use a cost function g that penalizes configurations in which inter-

agent distance is not d.
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Declarative Flocking

● Optimal Control used to define flocking controllers in centralized and 
distributed settings.

● Associated cost function has terms for cohesion and separation.

● No hard-coded rules as in Reynolds model.

● To generate agent accelerations, flocking controller seeks to minimize
cost at every time-step.
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Model Dynamics

The state of an agent i consists of its position 𝒙𝒊 and velocity 𝒗𝒊. The state of a

collection of n agents is given by:

The discrete-time equations of motion for agent i are:

𝒊 ⋅ 𝒊 𝒊 𝒗
⋅ 𝒊 𝒂

where is the duration of a time-step.
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Declarative Flocking Cost Function

● Ji (t) : distributed cost function

● 𝜔c , 𝜔s: cohesion and separation weights

● || xij || : Euclidean distance between agents i and j

● Ni : neighborhood of agent i

Cohesion Separation
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As we show later in talk, DF cost 

function can easily be extended with 

terms for obstacle avoidance, leader 

following, predator avoidance, ...



Model Predictive Control

● Develop a model of the plant

● At each time step t

Use the model and an optimization solver to determine control inputs that 

minimize cost function over a finite prediction horizon T

Only apply first optimal control action to the plant

Repeat at t + 1 after updating model state with new measurements of the plant
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Goal: Find best accelerations ai(t) at each time step that will lead to a flock formation.

DONE!



Model Predictive Control (2)

𝐽𝑖(𝑡) : cost for agent 𝑖 at time 𝑡

𝑇 : prediction horizon

𝑎𝑖
∗(𝑡′|𝑡) : optimal accel. for agent 𝑖 at time 𝑡′ as computed at time 𝑡

We can now set 𝑎𝑖(𝑡) to 𝑎𝑖
∗(𝑡|𝑡)
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At time 𝑡, we solve the following local optimization problem:

𝑎𝑖
∗ 𝑡|𝑡 , … , 𝑎𝑖

∗ 𝑡 + 𝑇 − 1|𝑡 = argmin𝑎𝑖 𝑡|𝑡 ,…,𝑎𝑖 𝑡+𝑇−1|𝑡  

𝑘=1

𝑇

𝐽𝑖(𝑡 + 𝑘 − 1)



Performance Measures
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Flocking Model Formations (30 agents)

19

Reynolds Lattice Centralized Lattice Distributed 

DF Centralized DF Distributed Olfati-Saber



Declarative Flocking Results
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Neural Flocking [FoSSaCS 2020]

● New approach to flocking using Supervised Learning.

● Centralized MPC controller provides labeled training data to        

learning agent:  a symmetric distributed neural controller (DNC).
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NF Control Objectives

Basic Flocking (BF) Obstacle Avoidance (OA) Predator Avoidance (PA) Target Seeking (TS)
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DNN for Neural Flocking

● xi and vi are position and velocity of agent i

● o and g are closest obstacle and target location

● xpred and vpred are position and velocity of predator

● DNN outputs accelerations ax0 and ay0 for agent 0

DNN with 5 hidden layers, each with 84 neurons

DNN Inputs

BF OA + TS PA
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ax0
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DNC Training Parameters

● Training data: CMPC trajectory data for 15 agents: 

○ Initial position distribution = [-15, 15]2

○ Initial velocity distribution = [0, 1]2

● # training samples = 200 trajs ⨉ 1,000 time-steps ⨉ 15 agents = 3M

● Batch size = 2,000 ,  # training epochs = 1,000

● Optimizer = Adam

● # training parameters = 33,854 (for Basic Flocking)

● Training software = Keras (runs on top of TensorFlow)
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Neural Flocking Results (15 agents)

Average (over 100 runs) execution times per time-step:

Centralized MPC: 80.6 ms / agent

Distributed MPC: 58 ms / agent

DNC: 1.6 ms / agent
26

DNC 36x faster than DMPC!



Neural Flocking Generalization

● ICR: Inter-agent collision rate

● OCR: Obstacle collision rate

● PCR: Predator collision rate
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Generalization Performance for Basic Flocking Generalization Performance for 

Obstacle Avoid. & Predator Avoid.



Obstacle Avoidance Video
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Predator Avoidance Video
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● Flocking maneuvers employed by starlings for a 

spontaneous change in travel direction.

● Such turns initiated by a few individual birds & 

rapidly propagate throughout the flock.

● Propagation follows a linear dispersion law with 

negligible attenuation.

Flocking Maneuvers
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● Distributed MPC with Acceleration-Weighted Neighborhooding (AWN-

DMPC) used to synthesize a controller for high-speed flocking maneuvers.

● AWN exploits imbalance in agent accelerations during a turning maneuver to 

ensure actively turning agents are prioritized.

● Only a few agents (initiators) are aware of maneuver objective. AWN-DMPC 

controller ensures this local information is propagated throughout the flock in 

a scale-free manner.

Flocking Maneuvers [ACC 2021]
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AWN-DMPC Cost Function

where 𝜸ij is the preferential weight term

● is the is change in agent j 's velocity between the two

consecutive time-steps.

● 𝜂 is a large constant used to stabilize the softmax function.
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AWN-DMPC Results

Trajectories with AWN

(20 agents, 170° turn, 4 initiators)

Trajectories without AWNStarling Trajectories

[Attanasi et al. 2015]
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Flock Maneuver using AWN
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● Declarative Flocking optimal-control framework (cost functions).

● Centralized / Distributed MPC flocking controllers.

● Extended Declarative Flocking to various flight control objectives.

● Distributed Neural Controller for real-time flocking + generalization.

● Distributed MPC+AWN controller for high-speed flocking maneuvers.

● Experimental validation using SPC and Crazyflie drones.

Conclusions
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● WebGL for high-speed, large-scale flocking on your phone!

● Outdoor demonstrations

○ Crazyflies 2.1 (only 27 grams & fits in palm of your hand)
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Ongoing & Future Work

● Collision Avoidance can be established using our Distributed                                   

Simplex Architecture for runtime assurance of distributed systems.

● Learn explainable, biophysical Neural Network for flocking

(Liquid-Time Constant NNs)
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